Extensions 1→N→G→Q→1 with N=C24 and Q=C22

Direct product G=NxQ with N=C24 and Q=C22
dρLabelID
C22xC2496C2^2xC2496,176

Semidirect products G=N:Q with N=C24 and Q=C22
extensionφ:Q→Aut NdρLabelID
C24:1C22 = C8:D6φ: C22/C1C22 ⊆ Aut C24244+C24:1C2^296,115
C24:2C22 = S3xD8φ: C22/C1C22 ⊆ Aut C24244+C24:2C2^296,117
C24:3C22 = Q8:3D6φ: C22/C1C22 ⊆ Aut C24244+C24:3C2^296,121
C24:4C22 = D8:S3φ: C22/C1C22 ⊆ Aut C24244C24:4C2^296,118
C24:5C22 = S3xSD16φ: C22/C1C22 ⊆ Aut C24244C24:5C2^296,120
C24:6C22 = C3xC8:C22φ: C22/C1C22 ⊆ Aut C24244C24:6C2^296,183
C24:7C22 = S3xM4(2)φ: C22/C1C22 ⊆ Aut C24244C24:7C2^296,113
C24:8C22 = C2xD24φ: C22/C2C2 ⊆ Aut C2448C24:8C2^296,110
C24:9C22 = C2xC24:C2φ: C22/C2C2 ⊆ Aut C2448C24:9C2^296,109
C24:10C22 = C6xD8φ: C22/C2C2 ⊆ Aut C2448C24:10C2^296,179
C24:11C22 = S3xC2xC8φ: C22/C2C2 ⊆ Aut C2448C24:11C2^296,106
C24:12C22 = C2xC8:S3φ: C22/C2C2 ⊆ Aut C2448C24:12C2^296,107
C24:13C22 = C6xSD16φ: C22/C2C2 ⊆ Aut C2448C24:13C2^296,180
C24:14C22 = C6xM4(2)φ: C22/C2C2 ⊆ Aut C2448C24:14C2^296,177

Non-split extensions G=N.Q with N=C24 and Q=C22
extensionφ:Q→Aut NdρLabelID
C24.1C22 = C8.D6φ: C22/C1C22 ⊆ Aut C24484-C24.1C2^296,116
C24.2C22 = C3:D16φ: C22/C1C22 ⊆ Aut C24484+C24.2C2^296,33
C24.3C22 = D8.S3φ: C22/C1C22 ⊆ Aut C24484-C24.3C2^296,34
C24.4C22 = C8.6D6φ: C22/C1C22 ⊆ Aut C24484+C24.4C2^296,35
C24.5C22 = C3:Q32φ: C22/C1C22 ⊆ Aut C24964-C24.5C2^296,36
C24.6C22 = D8:3S3φ: C22/C1C22 ⊆ Aut C24484-C24.6C2^296,119
C24.7C22 = S3xQ16φ: C22/C1C22 ⊆ Aut C24484-C24.7C2^296,124
C24.8C22 = D24:C2φ: C22/C1C22 ⊆ Aut C24484+C24.8C2^296,126
C24.9C22 = D4.D6φ: C22/C1C22 ⊆ Aut C24484-C24.9C2^296,122
C24.10C22 = Q16:S3φ: C22/C1C22 ⊆ Aut C24484C24.10C2^296,125
C24.11C22 = Q8.7D6φ: C22/C1C22 ⊆ Aut C24484C24.11C2^296,123
C24.12C22 = C3xC8.C22φ: C22/C1C22 ⊆ Aut C24484C24.12C2^296,184
C24.13C22 = D12.C4φ: C22/C1C22 ⊆ Aut C24484C24.13C2^296,114
C24.14C22 = D48φ: C22/C2C2 ⊆ Aut C24482+C24.14C2^296,6
C24.15C22 = C48:C2φ: C22/C2C2 ⊆ Aut C24482C24.15C2^296,7
C24.16C22 = Dic24φ: C22/C2C2 ⊆ Aut C24962-C24.16C2^296,8
C24.17C22 = C4oD24φ: C22/C2C2 ⊆ Aut C24482C24.17C2^296,111
C24.18C22 = C2xDic12φ: C22/C2C2 ⊆ Aut C2496C24.18C2^296,112
C24.19C22 = C3xD16φ: C22/C2C2 ⊆ Aut C24482C24.19C2^296,61
C24.20C22 = C3xSD32φ: C22/C2C2 ⊆ Aut C24482C24.20C2^296,62
C24.21C22 = C3xQ32φ: C22/C2C2 ⊆ Aut C24962C24.21C2^296,63
C24.22C22 = C6xQ16φ: C22/C2C2 ⊆ Aut C2496C24.22C2^296,181
C24.23C22 = S3xC16φ: C22/C2C2 ⊆ Aut C24482C24.23C2^296,4
C24.24C22 = D6.C8φ: C22/C2C2 ⊆ Aut C24482C24.24C2^296,5
C24.25C22 = C2xC3:C16φ: C22/C2C2 ⊆ Aut C2496C24.25C2^296,18
C24.26C22 = C12.C8φ: C22/C2C2 ⊆ Aut C24482C24.26C2^296,19
C24.27C22 = C8oD12φ: C22/C2C2 ⊆ Aut C24482C24.27C2^296,108
C24.28C22 = C3xC4oD8φ: C22/C2C2 ⊆ Aut C24482C24.28C2^296,182
C24.29C22 = C3xM5(2)central extension (φ=1)482C24.29C2^296,60
C24.30C22 = C3xC8oD4central extension (φ=1)482C24.30C2^296,178

׿
x
:
Z
F
o
wr
Q
<